Architects of the earliest microfossils, atmospheric oxygen, and plastids.

Ancient hydrothermal ecosystems on earth: a new palaeobiological frontier.

Entrez PubMed: "Thermal springs are common in the oceans and on land. Early in the history of the Earth they would have been even more abundant, because of a higher heat flow. A thermophilic lifestyle has been proposed for the common ancestor of extant life, and hydrothermal ecosystems can be expected to have existed on Earth since life arose. Though there has been a great deal of recent research on this topic by biologists, palaeobiologists have done little to explore ancient high temperature environments. Exploration geologists and miners have long known the importance of hydrothermal systems, as they are sources for much of our gold, silver, copper, lead and zinc. Such systems are particularly abundant in Archaean and Proterozoic successions. Despite the rarity of systematic searches of these by palaeobiologists, already 12 fossiliferous Phanerozoic deposits are known. Five are 'black smoker' type submarine deposits that formed in the deep ocean and preserve a vent fauna like that in the modern oceans; the oldest is Devonian. Three are from shallow marine deposits of Carboniferous age. As well as 'worm tubes', several of these contain morphological or isotopic evidence of microbial life. The oldest well established fossiliferous submarine thermal spring deposit is Cambro-Ordovician; microorganisms of at least three or four types are preserved in this. One example each of Carboniferous and Jurassic sub-lacustrine fossiliferous thermal springs are known. There are two convincing examples of fossiliferous subaerial hydrothermal deposits. Both are Devonian. Several known Proterozoic and Archaean deposits are likely to preserve a substantial palaeobiological record, and all the indications are that there must be numerous deposits suitable for study. Already it is demonstrable that in ancient thermal spring deposits there is a record of microbial communities preserved as stromatolites, microfossils, isotope distribution patterns and hydrocarbon biomarkers."

Ancient hydrothermal ecosystems on earth: a new palaeobiological frontier. Walter MR. Ciba Found Symp. 1996;202:112-27; discussion 127-30.


Post a Comment

Links to this post:

Create a Link

<< Home

. . . fermenting since 10/06/06